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Comparisons are made of experimental a& 'theoretical zero-lift wave 

The experimental data were 
drag for several nose shapes, wing-body combinations, and models of 
current airplanes at Mach numbers up to 1.9. 
obtained from tests in the Ames 6- by 6-foot supersonic wind tunnel and 
at the NACA Wallops Island facility. The theoretical drag was found by 
use of a linear theory utilizing model area distributions. 
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The agreement between theoretical and experimental zero-lift wave- 
drag coefficients was generally very good, especially for a fuselage or 
for fuselage-wing combinations that were vertically symmetrical. 
other models that had rapid changes in body shape and/or were not verti- 
cally symmetrical, the agreement of theory with experiment ranged from 
fair to poor, depending on the severity of the change in shape. 

For 

INTRODUCTION 

I n  reference 1 a method was suggested for estimating the zero-lift 
wave drag of wing-body combinations moving at supersonic speeds. The 
mechanics of applying this method were developed in references 2 and 3. 
These references also presented some comparisons between experiment and 
theory at speeds near the speed of sound. 
herein was undertaken to provide similar comparisons for other models, 
namely several nose shapes, wing-body corribinations, and current airplanes, 
for Mach numbers up to 1.9. 
provides further comparisons between experiment and theory for nose shapes, 
wings, and wing-body combinations. Such comparisons indicate some of the 
limitations of this theory in predicting the zero-lift wave drag of a 
system of wings and bodies traveling at supersonic speeds. 

The investigation reported 

A concurrent study reported in reference 4 
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SYMBOLS 

dimensionless coeff icien“ts defining the magnitude of the harmonics 
of the Fourier sine series 

zero-lif t drag 
qs, 

zero-lift drag coefficient, 

average skin-friction drag 
q(wetted area) 

average skin-friction coefficient, 

eero-lift wave drag zero-lift wave drag, 
9SD 

length of equivalent body 

free-stream Mach number 

number of terms or harmonics used in the Fourier sine series 

a harmonic of the Fourier sine series 

free-stream dynamic pressure 

Reynolds number 

projection of area in oblique cutting planes onto a plane parallel 
to the yz plane 

first derivative of S with respect to x 

second derivative of S with respect to x 

area upon which drag coefficients are based (see table I) 

free-stream velocity 

Cartesian coordinates 
(Origin is at nose and positive x,y,z directions are rearward 
and parallel to body axis, starboard, and upwards, respectively.) 

angle between the positive z axis and the intersection of a 
plane tangent to the Mach cone with the 
angles counterclockwise from positive z axis looking upstream) 

yz plane (positive 

1 Mach angle, arc sin - M 
mass density of air 
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+ angle between the positive y axis and the intersection of the 
oblique cutting planes with the 
(positive angles clockwise from y axis looking down) 

xy plane, arc tan (cot 1 cos e )  

MODELS AND TEST 

Tne configurations studied in the present report were two nose shapes, 
several bodies, wing-body combinations, and current airplanes and are shown 

ILLL UUL- LI UUD-DCL U U U ~  utta uis wIuut, iuns,  mociirfied where 
necessary to produce zero slope at the nose and the tail, are shown in 
figure 2. This modification is required by the theory used herein and 
will be discussed at a later point in this report. 
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The nose shapes, models A and B, were parts of complete models fired 
from the helium gun at the NACA Pilotless Research Station, Wallops Island, 
Virginia. The complete models consisted of the nose shape having a fine- 
ness ratio of 3 to 1 and an afterbody which was identical in each case. 
The afterbody comprised a cylindrical section 02 fineness ratio 4 to 1 
followed by a conical section of fineness ratio 5 to 1. 
mounted on the aft end of the conical section. 

Three fins were 

The drag forces for models A and B were obtained from the deceleration 
The data history of the model as it traveled along a ballistic trajectory. 

were obtained for a range of Mach numbers from 0.8 to 1.25 for Reynolds 
numbers between 5.3 and 10 million per foot. 
presented herein are based on the maximum cross-sectional area of the body 
(table I) and were estimated to be accurate to k0.008. 

The drag coefficients 

Models C to I shown in figure 1 were investigated in the Ames 6- by 
6-foot supersonic wind tunnel. Models C and D had the same distribution 
of cross-sectional area and differed only in the shape of the cross sec- 
tion, model C having circular cross sections and modelD having cross 
sections more nearly rectangular. Models F and I had protuberances on 
the side of the fuselage which approximated the fuselage shape with ducts 
having inlets faired closed. On models G and H the air inlets were open. 
The models were sting-mounted in the wind tunnel and the forces were 
measured with an internal electrical strain-gage balance. 

The data for models C to I were obtained at Mach numbers between 
0.60 and 0.93 and between 1.20 and 1.90. 
per foot for models C, D, E, F and H, 1.5 million per foot for model G, 
and 4 million per foot for models E less wing and I. 
presented herein for these models were based on an assumed wing area for 
models C and D and the total wing area for models F through I. Toe drag 
coefficients have been corrected for model base pressure drag by adjusting 
the pressure over the base to correspond to the free-stream static-pressure 
curve. 

The Reynolds number was 3 million 

The drag coefficients 

The drag coefficients y e  considered to be accurate to +O.OOO5. 
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THEOFZTICAL CALCUI:\TIONS 

t b  

Reference 1 relates the zero-lift wave drag of a configuration, 
composed of wings and bodies, traveling at a supersonic speed to the 
average drag of a certain group of equivalent bodies of revolution. The 
determination of the area distribution of the equivalent bodies of revo- 
lution is discussed in the Appendix. It suffices to say here that the 
area distribution for each equivalent body is related to that of the real 
system of wings and bodies by so-called cutting planes which are inclined 
at the Mach angle to and a roll angle about the longitudinal or 
of the system. The group of equivalent bodies of revolution comprises 
all such bodies for roll angles of the cutting planes from 0' to 360'. 

x axis 

The drag for ea,ch,of the equivalent bodies of revolution can be 
computed from von Karman's formula for the wave drag of a slender body 
of revolution, 

212 212 

D'(@ = "'J s,, s"(x)s"(xl)log(x - Xl)dX dx, 
-212 

4n 

This equation can be simplified to 

. 

when 
the expansion of 
the value of 
drag of the wing-body system is then found from 

S ' ( x )  is expanded in a Fourier sine series (see ref. 5). To permit . 
S'(x) in a Fourier sine series, it is necessary that 

S'(x) be zero at the nose and tail of the body. The total 

26 n 

D = ' J  D'(0)dG 
2n 

0 

This equation cam be further simplified to 

for wing-body systems which have a vertical plane of symmetry. 
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The area distributions for the configurations studied herein were 
found by a graphical procedure which is explained in some detail in the 
Appendix. 
-z/2 and n/2 were detemdced f o r  a l l  of t h e  configmations investigated 
herein except for those models which were bodies of revolution. 
cal group of such area distributions as obtained from the areas inter- 
sected by a series of cutting planes at a Mach angle of 41.80 (M = 1.5) 
is shown in figure 3(a) for model F less tail. For models G and R the 
a e s  distrib.;tims fo-iini3 by Cue methods given in the Appendix were modi- 
fied to take account of the area of the ducts. The modification consisted 
in subtracting from the -tr.nt.nL s e z  d i s t r i b u t i = ~  thc &-ea & the 6uct WMch 
was taken as a straight-line variation from the inlet area to the exit 
area. The treatment of the duct area in this fashion simulates a mass-flow 
ratio of 1 through the duct (see ref. 3). 

Five area distributions for different roll angles between 

A typi- 

After the area distributions were found for the equivalent bodies of 
revolution, the coefficients An in the Fourier sine series expressing 

S'(x) were determined. The quantity znAn2 was then calculated and 

plotted with respect to roll angle as shown in figure 3(b). 

value of c a n 2  for inserkion in the drag equations was then found 

graphically from such plots. 

The average 

It is noted that a smooth curve has been drawn through the five points 
in figure 3(b) corresponding to the five equivalent bodies of revolution 
which were evaluated. However, for those values of 8 in which the 
cutting planes are parallel to a round leading or trailing edge of a wing 
or tail there is a sudden change in area distribution at the value of x 
where the plane intersects the edge of the wing or tail, thereby producing 

an infinite slope, S'(x), and therefore, an ihinite value of 1 Mn2 
The linear theory used herein would no longer be valid under such circum- 
stances since it would indicate an infinite wave drag. 
results have indicated no large values of drag which would be associated 

with these infinite values of 1 nAn2 in the theoretical calculations, 

no attempt has been made in this report to define such values in the plots 

Since experimental 

such as figure 3(b). Furthermore, in the evaluation of CnAn2 only 24 

or 25 An terms were used in the Fourier sine series defining S'(x). 
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The area distributions for the five r o l l  angles, $, %, ' and 0, and 

hence the drag, were obtained at Mach numbers of 1.0, 1.4, and 1.8 for c L  
models A and B and at Mach numbers Of 1.0, 1.5, and 1.9 for models C to I. 
For models A, B, and E the coefficients 
the slope of the m e a  distribution in a Fourier series using harmonic 
analysis as in reference 2. For the other models, the coefficients An 
were found by an improved method (ref. 3) in which Tchebichef polynomials 
are substituted into the equations defining the coefficients of the Fourier 
series. 

An were determined by expanding 

CALCULATION OF EXPERIMENTAL WAVE DRAG 

Models A and B 

The experimental zero-lift drag coefficients (CD ) for models A and B 
which are presented in reference 6 are shown in figurgs 4(a) and 5(a). 
As described in reference 6, the zero-lift wave drag for each of the nose 
sections (figs. 4(b) and ?(b)) was obtained by subtracting from the zero- 
lift drag data of the nose-afterbody-fin combination the friction drag 
of the combination, the wave drag of the afterbody and fins, and the base 
pressure drag. 
method of Van Driest in which the boundary-layer flow is assumed to be 
completely turbulent, an assumption considered in reference 6 to be 
valid. 
were determined from the difference between the base pressure and wave 
drag of an identical afterbody and fin in combination with a cone-shaped 
nose and the wave drag of the cone-shaped nose alone as determined 
theoretically. 
drag in this manner that the pressure fields of various nose shapes do 
not significantly affect the pressure drag of the afterbody and fins. 
This assumption appears justifiable since the forward portion of the 
afterbody is a fineness-ratio-4 cylinder. 

The friction drag of the c,ombination was estimated by a 

The base pressure drag and the wave drag of the afterbody and fins 

It is assumed in determining the base pressure and wave 

Models C Through I 

The experimental zero-lift drag for models C through I are shown in 
figures 6 through 16. 
these models was obtained by subtracting the estimated friction drag from 
the measured zero-lift drag coefficient. 

The zero-lift wave drag coefficient for most of 

Generally, in the past the zero-lift wave drag has been found by 
subtracting the zero-lift drag at subsonic speeds,usually considered to 
be the friction drag, from the total zero-lift drag at supersonic speeds. 
This method in effect assumes that the friction drag is independent of 

1 
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of Mach number, an assumption essentially valid if the boundary layer on 
the entire surface is laminar, A portion of the boundary layer is turbu- 
lent, however, and the results of reference 7 show that the friction drag 
coefficient for a tub-dent bwndaz-y layer varies ;sith Mach nmber. In 
the present calculations, therefore, that portion of the zero-lift drag 
at supersonic speeds considered to result from a turbulent boundary-layer 
flow was corrected for the effects of Mach number according to the factor 
presented in reference 7. The magnitude of the experimental skin-friction 
drag coefficient resulting from the turbuient boundary-layer flow was esti- 
mated from a comparison of the experimental zero-lift drag at 0 - 8  Mach 

l amina r  and completely turbulent boundary-layer flow. 
equation gives the estimated value for the skin-friction drag coefficient 
on the model at any Mach number. 

c,LrnLber ~ y d  ccci&ste", sf t h e  skin-frictiaa &yjg for E G q l e t e l y  

The following 

Cw = E - L T  T (?til +- T - E L  
- c%=o.s T - L  

Most of the symbols in this equation can best be described in the follow- 
ing illustration. 

M 

The ratio 

to the friction drag coefficient at a Mach number of 0.8 for a model where 

cF is the friction drag coefficient at some Mach number 
+MO. 8 
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all its area &p ifi turbulent flow (see ref. 7). 
if the boundary-layer transition point does not change with Mach number, 
which is the assumption made in this report. 

The equation is valid 

The skin-friction drag for a model was computed by estimating the 
drag of each model component and then adding the drag of all the com- 
ponents together. The skin-friction drag of the body in which the entire 
boundary layer is turbulent was found by using the results of figure 15 
in reference 7. The skin-friction drag coefficient for fully laminar 
flow was found from the equation as derived in refer- 
ence 8. As mentioned previously, the slight variation in CF with Mach 
number was neglected for the laminar case. The Reynolds number used in 
calculations for both types of boundary-layer flow was based on the 
over-all length for the body and on the mean aerodynamic chord for a wing 
or tail surface. 

CF = 1.33/JR 

The drag data for models F, G, G less tail, and H (figs. 10, 13, 14, 
and 15) contain drag caused by sources other than friction which must be 
considered in calculating the zero-lift wave drag. The drag due to lift 
of the horizontal tail of model F was estinated from tail-on and tail-off 
data of the model to be approximately 0.0003 at subsonic speeds and about 
0.0013 at supersonic speeds, and these values were used in calculating 
the wave drag for that model. The wing of model G is cambered, resulting 
in an increment of drag at zero lift which was estimated from 6- by 6-foot 
supersonic wind tunnel data for wings of similar p lan  form with and with- 
out camber to be about 0.0017 at subsonic speeds and about 0.0023 at 
supersonic speeds. This drag due to camber and an additional drag due 
to lift of various components were taken into account in the calculations 
of the wave drag. In computing the wave drag for models G and H the 
internal drag of the ducts has been subtracted. 

IiESULTS AND DISCUSSION 

A comparison of the theoretical zero-lift wave drag and the experi- 
mental data for models considered herein are presented in figures 4 
through 16 inclusive. A s  might be expected for the range of Mach numbers 
and models considered, the agreement ranged from poor to very good. 
general, agreement was poor at transonic speeds as evidenced by the results 
for models A and B in figures 4 and 5. 
expected because the theory used herein is a linear theory which shows 
the transonic drag rise as a step at 
experiment does not show this step. 

In 

This lack of agreement is as 

M = 1.0, and it is well known that 

In general, the agreement between experimental and calculated values 
of zero-lift wave drag for Mach numbers above approximately 1.2 was very 
good for vertically symmetrical fuselages alone or with thin symmetrical 
wings mounted on them. For example, the Comparison of data for models A, 

. -  

t -  

J 
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B, C, E, E less wing, and F less tail (figs. 4, 3 ,  6, 8, 9, and ll), gener- 
ally shows very good agreement. However, within this group of models 
having vertically symmetrical fuselages there were several cases in which 
the agreement was poor, namely the results for nodel F less the vi-, tail, 
and duct fairing protuberances (fig. 12) at most of the Mach numbers, and 
for model E (fig. 8) and model F less the tail (fig. 11) at a Mach number 
of 1.9. In the case of model F less the wing, tail, and duct fairings, 
the discrepancy between experiment and theory has not been explained. 
I n  the cese c,f t k e  discrcp~~zies at 
the data may be faulty. 
experimental values of Go at M = 1.9 are considerably &mre the vd-12es 
at the lower supersonic Mach numbers. 
dissimilar so that one would not suspect a configuration characteristic 
to be responsible for the rise in cD0 at a Mach number of 1.9. However, 
both sets of results were obtained in the Ames 6- by &foot wind tunnel 
wherein severe pressure disturbances are known to exist in the empty test 
section at a Mach number of 1.9. 
responsible for the apparently faulty experimental data at this mach number. 

14 = 1.9, there a r e  iiiirications that 
It will be noted that for some of the models the 

Models E and F less tail are very 

Such pressure disturbances may be 

Two sources of disagreement of the theoretical zero-lift wave drag 
with experimental data noted for the models considered are believed to 
be a lack of vertical symmetry and/or a rapid variation of shape. For 
models C and D, which had the same area distribution in planes perpendicu- 
lar to a body axis, there was good agreement for model C but poorer agree- 
ment for model D. %is is attributed to the fact that model D did not 
have vertical symmetry. 
had the most rapid variation of shape of any of the models considered and 
showed very poor agreement. A probable explanation of the lack of agree- 
ment for models D and I is suggested by reference 9. Lomax shows in this 
report that wnen the shape of the body is such to cause a nonsyrmnetrical 
pressure distribution and, hence, a resultant pressure force in the planes 
of some of the oblique area cuts, then the theoretical zero-lift wave drag 
is different from that calculated by the method used herein. 

Model I, in addition to lack of vertical symmetry, 

A comparison of theoretical and experimental ED, for models F 
and G shows agreement which is not as good as the comparison for these 
models without the tail. 
tail of model G actually increases the estimated value of 

that the length of the equivalent body of revolution at a roll angle ( e )  
of -z/2 is shorter and hence the area distribution is more blunt near 
the aft end for model G less tail than for the complete model. A s  
expected, the theory predicts a higher wave drag for this blunt body 
than for the less blunt body representing the configuration with the 
vertical tail. 

It is noted that the removal of the high vertical 
at the 

highest test Mach number. This increase can be attributed 
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CONCLUSIONS 

A comparison of the theoretical zero-lift wave drag and the experi- 
mental data for several aerodynamic bodies indicates the following 
general conclusions : 

1. The agreement of theory with experiment was poor near transonic 
Mach numbers. 
used predicts a step at a Mach number of 1.0 which is not characteristic 
of experimental data. 

This lack of agreement arises because the linear theory 

2. The agreement above transonic speeds was very good for vertically 
symmetrical fuselages alone or in combination with a symmetrical wing. 

3. The agreement above transonic speeds for two fuselages with simi- 
lar area distributions showed poorer agreement for the one which did not 
have vertical symmetry. 

4. The agreement above transonic speeds for a model with a rapid 
and nonsymmetrical change in shape was very poor. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Sept. 7, 1956 . 
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APPENDIX 

DET!F3MINATCON OFo& DISTRIBUTIONS OF 

EQUIVAI;ENT BODIES OF REVOLUTION 
. 

According to the theory used in this report, the zero-lift wave drag 
of R pa~t . i r111ar  aerc?rt_yn_a&c c o d i g x z t i ~ a  is deperdcrt ilp~a the z-eii dis- 
tribution of a series of bodies, each of which is related to the geometry 
of the configuration. To find the perpendicular cross-sectional area 
distribution of one of these bodies, imagine the configuration with 
a series of Mach planes spaced along its length and at the same roll angle 
around the x axis with respect to its z axis. Each Mach plane slicing 
through the configuration defines a certain area. This area and similar 
areas for other x 
x axis defines the desired area distribution. 
process for other roll angles between Oo and 360°, one obtains the desired 
area distributions of a series of equivalent bodies. 

positions projected onto a plane perpendicular to the 
By repeating the above 

Area distributions used herein were found by a graphical procedure 
using three-dimensional geometry. Although other graphical methods for 
finding these area distributions are available, the present method is 
discussed in some detail to-indicate the degree of accuracy of the area 
distributions used herein. 

AREA DISTKCBUTION OF A FUSELAGE 

To find the area distributions which depend only on the fuselage, 
contour maps are constructed which represent the shape of the side of the 
fuselage as observed from a position perpendicular to the x axis and at 
an angle of 8 from the positive z axis. The construction of a contour 
map is illustrated in figure l7(a). For this simple example the fuselage 
is a cylinder, symmetrical about the xz plane, and a r o l l  angle of goo 
has been selected for the viewing position. 
the contour map at a roll angle of 270° ( e  + lao) is the same as that 
for a roll angle of goo and hence is not required. To construct the 
contour map, contour planes were used. The edge view of these contour 
planes which are perpendicular to the line of sight (parallel to the xz 
plane for this particular viewing position) are shown on the top view of 
the model. The contour map shows lines which represent the intersection 
of these contour planes with the body surface. Each of these lines is a 
constant distance from the vertical plane of symmetry and this distance 
is noted on the contour map. The location of one point on one of these 
lines is found by intersecting the periphery of a typical section, such 
as AA in figure 17(a), by a line which represents a contour plane. 
such points are shown projected onto the contour map at station xl. 

As a result of symmetry, 

Two 



1 2  

Connecting these points to those of the same elevation at nearby stations, 
such as b x2, gives contour lines whjch for the illustration model are 

After the contour map is constructed, for the roll angle of go0, the 
area intersected by a Mach plane at a roll angle of 90' can be obtained 
as in figure l7(b). As shown, the line representing the edge view of the 
Mach plane at a roll angle of 90' is drawn on the contour map intersecting 
the x axis at the desired value of x and at an angle of p to the x 
axis. At each point where this Mach plane line intersects a contour line, 
the distance from the fuselage surface to the plane passing through the 
x axis and perpendicular to the line of sight is known. This distance 
is laid off perpendicular to the cutting line and establishes one point 
on the periphery of the cut. Connecting this point and similar points 
for other contour lines gives the dotted line representing the area inter- 
sected on one side of the fuselage by a Mach plane at a roll angle of 90'. 
As indicated, the construction can be done either on the contour map or 
offset as in section CC. In the present case because of the assumed 
symmetry, the area can be doubled to get the total area intersected. 
However, in the general case it is necessary to repeat this operation on 
the contour map for This 
area is then multiplied by sine p to obtain the area projected onto the 
plane perpendicular to the x axis. The area intersected by the Mach 
plane at a r o l l  angle of 8 + 180O,in the present case 270°, is determined 
in a fashion similar to that discussed for a r o l l  angle of 90' except that 
the cutting line is drawn at an angle of -p to the x axis. As before, 
the area is multiplied by sine p to obtain the area projected onto the 
plane perpendicular to the x axis. 

straight since the body has a constant 'se'cfdon. I 

8 + 180' to obtain the total intersected area. 

Use of the contour map in determining the fuselage area intersected 
by the Mach plane at a roll angle of 
and Oo, is illustrated in figure 17(c). 
contour map represent the intersection of Mach planes at 
contour planes. The location of these vertical lines can be determined 
either graphically or mathematically. .To determine the spacing graphi- 
cally a view of the fuselage at an angle 
part of figure l7(c). On this view,lines parallel to the x axis are 
drawn which represent the edge view of the contour planes. 
senting the edge view of the Mach planes at roll angles of both 
and 8 + 90°are then drawn through the appropriate value of x on the 
x axis and at an angle of +p and -p with respect to the x axis. The 
intersections of these Mach planes with the contour planes are projected 
onto the contour map giving the required spacing of the vertical lines 
on the contour map. 
mined mathematically since the spacing between the contour planes and the 
angle of the Mach planes, p, are known. Dividing the distance between 
two contour planes by tangent p gives the desired x distance between 
the lines of intersection of the contour planes and the Mach plane. The 
locus of the points of intersection of the contour lines with the vertical 

8 *go0 ,  in the present case 180' 
The dotted vertical lines on the 

8 k 90' and the 

8 - 9O0is drawn as in the upper 
Lines repre- 

8 - 98 

The spacing of these lines can also be readily deter- 



l i n e s  i n  the contour planes gives the projection of the area i n  the Mach 
plane onto the contour plane tkrough the x axis. I n  the present case 
because of fuselage symmetry, the complete mea  can be obtained from the 
s ingle  contour map as in figure 17(c).  SQwever, i n  the gerierd case of 
the cut -at the r o l l  angle (6’ - goo), that portion t o  the r igh t  of the 
ve r t i ca l  l i n e  in the contour plane through the x axis would have t o  be 
obtained from the contour map of the opposite side of the fuselage. For 
the cut a t  the  r o l l  angle (8 + 90’) the portion on the l e f t  s ide would 
have t o  be obtained frm the mri+^”- ,,vu --- up of t’ie opposite side. Multiply- 
ing the t o t a l  area by tangent p gives the projection of the area on 
the plane perpendicular t o  the x axis. 

The example discussed above is  a specialized case where a contour 
map of a body symmetrical about the xz 
ing direct ion of 8 = goo. Due t o  the model symmetry about the xz plane 
it was shown that the area cut by the Mach plane a t  the r o l l  angle of 
( 8  - goo) is the same as tha t  cu t  by the angle (6’ + 90°) when 
This s imi la r i ty  i n  the area cut by two d i f fe ren t  Mach planes can be fur ther  
explained by a more general approach. 
symmetrical about a plane which contains the x axis and is  a t  a r o l l  
angle 7 about the x axis from the posit ive z axis, then the Mach 
planes on e i ther  side of the plane at roll angles of 
w i l l  have a common l i n e  of intersection i n  the plane of symmetry and w i l l  
in te rsec t  an equal area on the fuselage. 
symmetry i s  the xz plane then 
of 8 

plane w a s  developed f o r  a view- 

0 = goo. 

For instance, if the fuselage i s  

8 and 180°+ 2y  - 8 
Here again, if  the plane of 

7 = 0 and the area cut a t  a roll angle 
is the same as tha t  f o r  a r o l l  angle of 180’- 8. 

Now if  a fuselage has a plane of symmetry it can be shown using the 
general ru le  jus t  derived that eight area dis t r ibut ions representing eight 
d i f fe ren t  r o l l  angles can be found by carefully choosing a pa i r  of contour 
maps. 
30’ and 210’. 
previously, t o  f ind the area distributions f o r  r o l l  angles 30°, 120°, 210°, 
and 300’. If the fuselage i s  symmetrical about the xz plane, these 
area dis t r ibut ions are the same as those a t  r o l l  angles 150°, 60°, 
-30° ( 330°) and -120° (240°), respectively. 

For example, assume tha t  the r o l l  angle f o r  the* contour p lo ts  is  
It i s  always possible then, using the methods discussed 

AHEA DISTRIBUTION OF A WING 

The graphical layout f o r  finding the area d is t r ibu t ion  of a wing is 

Figure 18 
shown i n  f igure 18. 
the ordinates of the wing along constant-percent-chord l i nes .  
shows two constant-percent-chord l ines and corresponding l i nes  on the  wing  
surface representing the perpendicular distance of the wing surface above 
the chord plane. 

The f i rs t  step in  making the layout i s  t o  compute 
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Since the wing is thin, the cutting planes can be taken perpendicu- 
lar to the wing-chord plane without introducing a significant error in 
area. The angle $ at which the wing is cut is related to the r o l l  
angle 8 ,  and to the Mach angle, p,, by the equation 

9 = arc tan (cot p cos e) 
At each point where this cutting plane intersects the constant- 

percent-chord line the ordinate of the wing is known. This ordinate is 
laid off perpendicular to the cutting plane, thus determining one point 
on the periphery of the wing cut. 
constant-percent-chord lines indicates the upper surface of the wing cut. 
If the wing is symmetrical then the integrated area between the surface 
and the line in the chord plane gives half of the area in interest at a 
particular station. This area must be doubled and added to the area of 
a similar cut at -$ fo r  the opposite wing panel. This area is then 
multiplied by cos $ and added to the area of the body at a station 
position where the cutting plane intersects the reference body axis. 

Connecting the points from all the 
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TABLE: I.- ARE% UPON WHICH DRAG COEFFICIENTS ARE BASED 

vlodel 

A 
B 

C 
D 

E 
F 
G 
H 
I 

Area, 
SD 9 

sq f t  

o*01226 } Maximum body cross-sectional area 0.01226 

2-400 } A r b i t r a r y  wing area. 
2.400 

Gross wing area. I 2.425 
1.406 
5 338 
2 730 
1.626 

8 
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Figure 3.- Area distributions and a quantity proportional to the zero- 
lift wave drag for equivalent bodies of model F less tail at a Mach 
number of 1.5. 
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ERRATA 

NACA RM A56107 

By Robert B. Petersen 
Ma-rch 27, 1957 

Page 26, figure 2(e): 

The wing area distribution presented is incorrect. The following 
table gives the correct increment in wing area above the body area 
distribution. 

Body 
st at ion 
x, in. 
20.3 
22 
24 
26 
28 
30 
31 
32 
33 
34 
36 
38 
39 

W i n g  area, 
in.2 
0 

072 
1.97 
3.35 
4- 55 
5- 38 
5.60 
5.65 
5- 53 
5.22 
4.02 
1-56 
0 

Psge 36, figure 8(b): 

The theoretical zero-lift wave drag coefficients for M = 1.0 to 
M = 1.5 are too low. 
and at 

At M = 1.0 the value of A@, should be 0.0087 
should be 0.0056. M = 1-50 the value of 
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